
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

AQA Computer Science GCSE
3.3 Fundamentals of data

representation
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

3.3.1 Number bases

What are number bases?

A number base (or numeral system) determines how values are represented using digits.​
The most common bases are:

●​ Decimal (Base 10) - used by humans for counting​

●​ Binary (Base 2) - used by computers to represent all data and instructions​

●​ Hexadecimal (Base 16) - used by programmers for compact representation

Decimal (base 10)

Decimal is the number base that humans use to count, perhaps because we have ten
fingers. Decimal uses the ten digits 0 through to 9 to represent numbers.

Each digit in a decimal number has a place value based on powers of 10. The value of a
digit depends on its position within the number. This is illustrated by the table below, which
shows how the decimal number 237 is constructed using place values.

102 101 100

100 10 1

2 3 7

237 = (2×100) + (3×10) + (7×1)

Binary (base 2)

Binary is used by computer systems to store and represent all data and instructions. This is
because it has only two states, 0 or 1.

Each digit in a binary number has a place value based on powers of 2. This is illustrated by
the table below, which shows how the binary number 1011 is constructed using place values
- making it equal to 11 in decimal.

23 22 21 20

8 4 2 1

1 0 1 1

1011 = (1×8) + (0×4) + (1×2) + (1×1) = 11 (decimal)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Hexadecimal (base 16)
In contrast to decimal, hexadecimal uses the digits 0 through to 9 followed by the uppercase
characters A to F to represent the decimal numbers 0 to 15.

Decimal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F
Hexadecimal

Of all the number bases covered by this course, hexadecimal is the most compact. This
means that it can represent the same number as binary or decimal while using far fewer
digits. Each character in hexadecimal represents four bits in binary.

Each digit in a decimal number has a place value based on powers of 16. This is illustrated
by the table below, which shows how the hexadecimal value 2F is constructed using place
values - making it equal to 47 in decimal.

161 160

16 1

2 15 (because F represents 15)

​
 2F = (2×16) + (15×1) = 47 (decimal)

Why use hexadecimal?
Hexadecimal is easier for people to read than binary, and it takes less time to type than
binary. Therefore, hexadecimal representation is used because it is easier for humans to
read and work with. However, hexadecimal does not offer any advantage to computers:
computers always represent numbers using binary.

Bit patterns represent data

A binary value could represent:

●​ A number (e.g. 00000101 = 5)​

●​ A character (e.g. ASCII code for A)​

●​ A pixel in an image​

●​ A sample in audio

The datatype a bit pattern represents depends on how it is interpreted by the program.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.2 Converting between number bases

What is base conversion?

Base conversion is the process of changing a number from one number system to another -
specifically, between:

●​ Binary (base 2)​

●​ Decimal (base 10)​

●​ Hexadecimal (base 16)

You must be able to work with whole numbers only, up to a maximum value of:

●​ Decimal: 255​

●​ Binary: 11111111 (8 bits)​

●​ Hex: FF

Converting Decimal ↔ Binary

To convert binary → decimal:

You can convert from binary to decimal by using place value headers. Starting with one and
increasing in powers of two, placing larger values to the left of smaller values. For example,
the binary number 10110010 could have place value headers added as follows:

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

1 0 1 1 0 0 1 0

The binary number could then be converted to decimal by adding together all of the place
values with a binary one below them.

128 + 32 + 16 + 2 = 178

So the binary number 10110010 is equivalent to the decimal number 178.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

To convert decimal → binary:

When converting from decimal to binary, you use the same place value headers. Starting
from the left hand side, you place a one if the value is less than or equal to your number, and
a zero otherwise.

Once you’ve placed a one, you must subtract the value of that position from your number
and continue as before, until your decimal number becomes 0.

Let’s say we’re converting the number 53 to binary. First, write out your place value headers
in powers of two. Keep going until you’ve written a value that is larger than your number. For
53, we’re going to go up to 64.

64 32 16 8 4 2 1

Now, starting from the left, compare the place value to your number. 64 is greater than 53 so
we place a 0 under 64.

64 32 16 8 4 2 1

0

Moving to the right, we see that 32 is lower than 53, so we place a 1 under 32.

64 32 16 8 4 2 1

0 1

Because we’ve placed a 1, we have to subtract 32 from 53 to find what’s left to be
represented. In this case, 53 - 32 = 21.

We move to the right again and find 16, which is lower than 21, so we place a 1 under 16.

64 32 16 8 4 2 1

0 1 1

Again, because we’ve placed a 1, we have to calculate a new value. 21 - 16 = 5.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Moving right, we find 8. This is larger than 5 so we place a 0.

64 32 16 8 4 2 1

0 1 1 0

After moving right again, we find 4. As 4 is lower than 5, we place a 1.

64 32 16 8 4 2 1

0 1 1 0 1

Having placed a 1, we must again calculate a new value. 5 - 4 = 1.

Moving right to find 2, we place a 0 as 2 is greater than 1.

64 32 16 8 4 2 1

0 1 1 0 1 0

Moving right for the last time, we have 1. 1 = 1 so we place a 1.

64 32 16 8 4 2 1

0 1 1 0 1 0 1

Now that we’ve placed a 0 or a 1 under each place value, we have our answer. Although it’s
acceptable to remove any leading 0s, it may be preferable to add 0s to the start of your
answer to make it a whole number of bytes (a multiple of 8 bits).

53 = 0110101 = 110101 = 00110101

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Converting Binary ↔ Hexadecimal

To convert binary → hex:

In order to convert from binary to hexadecimal, the binary number must first be split into
nibbles. A nibble is four binary bits, or half a byte.

For example, the binary number 10110010 would be split into two nibbles:

10110010

1011 0010

Each binary nibble is then converted to decimal as in the previous example:

8 4 2 1 8 4 2 1

1 0 1 1 0 0 1 0
8 + 2 + 1 = 11 2 = 2

Once each nibble has been converted to decimal, the decimal value can be converted to its
hexadecimal equivalent like so:

11 = B 2 = 2

Finally, the hexadecimal digits are concatenated to form a hexadecimal
representation:

10110010 = B2

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

To convert hex → binary:

First, convert each hexadecimal digit to a decimal digit and then to a binary nibble before
combining the nibbles to form a single binary number.

 B2
 Split into hexadecimal digits

 B 2
 Convert hexadecimal to decimal

 11 2
 Convert decimal to binary nibbles

 1011 0010

 Combine binary nibbles

 10110010

Converting Decimal ↔ Hexadecimal

To convert decimal → hex:

Combining the steps above:

1.​ Begin by converting the decimal number into binary
2.​ Convert this binary number to hexadecimal

To convert hex → decimal:

Combining the steps above:

1.​ Begin by converting the hexadecimal number into binary
2.​ Convert this binary number to decimal.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.3 Units of information

The fundamental (smallest) unit of information is the bit (binary digit), and larger units are
made up of bits grouped together. A collection of 8 bits is called a byte. A bit is notated with
a lowercase b whereas a byte uses the uppercase B.

You’ll often come across the following prefixes used for decimal numbers.

Unit Symbol Relative size

Bit b 1 bit

Byte B 8 bits

Kilobyte kB 1,000 bytes

Megabyte MB 1,000 kilobytes

Gigabyte GB 1,000 megabytes

Terabyte TB 1,000 gigabytes

Note about prefixes: the specification uses decimal (base-10) prefixes, as shown in the
table above. These differ from binary prefixes (e.g. kibibyte = 1,024 bytes), but you only
need to know about the prefixes in the table above for the AQA GCSE Computer Science
(8525) exam.

Comparing quantities of bits
You should be able to compare quantities of bits using the prefixes shown in the table above.

For example:

●​ 1 GB = 1,000,000,000 bytes​

●​ 1 MB = 1,000,000 bytes​
 So: 1 GB = 1,000 MB​
 1 MB = 1,000 kB

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.4 Binary arithmetic

Binary arithmetic involves performing mathematical operations using binary numbers (0s and
1s).

Binary addition

When adding binary numbers, there are four important rules to remember:

Binary add Result Carry

0 + 0 0 0

1 + 0 1 0

1 + 1 0 1 (carry)

1 + 1 + 1 1 1 (carry)

You’ll only be expected to add up to three binary numbers of up to 8 bits.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example
Add binary integers 1011 and 1110.

 1 0 1 1

+ 1 1 1 0

 1 0 1 1

+ 1 1 1 0

 1

 1 0 1 1

+ 1 1 1 0

 1 0 1

 1 0 1 1

+ 1 1 1 0

 1 01 0 1

 1 0 1 1

+ 1 1 1 0

1 11 01 0 1

1 1 0 0 1

Place the two binary numbers above each other so that the
digits line up.

Starting from the least significant bits (the right hand side), add
the values in each column and place the total below. For the first
column (highlighted), rule 2 from above applies.

Move on to the next column. This time rule 3 applies. In this
case there is a carry digit. Place a 1 in small writing under the
next most significant bit’s column.

On to the next column, where there is a 0, a 1 and a small 1. In
this case, rule 3 applies again. Therefore the result is 10.
Because 10 is two digits long, the 1 is written in small writing
under the next most significant bit’s column.

Moving on to the most significant column where there are three
1s. Rule 4 applies, so the result for this column is 11. The first
digit of the result is written under the next most significant bit’s
column, but it can be written full size as there are no more
columns to add.

Finally, the result is read off from the full size numbers at the
bottom of each column. In this case, 1011 + 1110 = 11001.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Binary shifts
A binary shift involves moving the bits of a binary number left or right. Bits shifted from the
end of the register are lost and zeros are shifted in at the opposite end of the register.

There are two types of binary shift:

●​ Left shift → moves all bits to the left (adds 0s on the right)​

○​ Same as multiplying by 2 for each place shifted​

●​ Right shift → moves all bits to the right (adds 0s on the left)​

○​ Same as dividing by 2 for each place shifted

Example
In this example, we’ll apply a binary left shift of 1 to the original binary number 00101100.
The effect of this is to multiply 44 by 2, making 88.

Original: 00101100 (44)

Shifted: 01011000 (88)

Why use binary shifts?

●​ To multiply or divide by powers of 2​

●​ Used in low-level graphics, bitmasking, compression, and encryption

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.5 Character encoding

What is character encoding?

Character encoding is the process of converting characters (letters, numbers, symbols) into
binary so that they can be stored and processed by a computer’s hardware. This is
necessary because computers can only store and process binary data.

A character set, such as ASCII or Unicode, is a collection of characters and their
corresponding binary values. Every character is assigned a unique binary code, known as a
character code, using a standard such as ASCII or Unicode. Character codes are grouped
and they run in sequence. For example in ASCII ‘A’ is coded as 65, ‘B’ as 66, and so on,
meaning that the codes for the other capital letters can be calculated once the code for ‘A’ is
known. This pattern also applies to other groupings such as lower case letters and digits.

ASCII (American Standard Code for Information Interchange)

●​ Uses 7 bits to represent each character​

●​ Can store 128 (27) characters​

●​ Includes:​

○​ English letters (uppercase & lowercase)​

○​ Digits 0–9​

○​ Common symbols (@, #, etc.)​

○​ Control codes (like newline)

Unicode

●​ Uses 8-48 bits to represent each character, allowing it to represent a much wider
range of different characters than ASCII​

●​ Supports many different languages (not just the Latin alphabet but also alphabets like
Arabic, Cyrillic, Greek and Hebrew), and more symbols (such as emojis). This means
that data such as text can be represented in a wider range of languages, making
computers more accessible worldwide.​

●​ Unicode uses the same codes as ASCII up to 127.

Feature ASCII Unicode

Bit length 7 bits (128 characters) 8–32 bits (over 100k characters)

Language support English only Worldwide character support

Use today Legacy systems Standard in modern systems

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.6 Representing images

How are images represented in a computer?

Digital images, known as bitmaps, are made up of tiny squares called pixels (short for
"picture elements"). A pixel is a single point in an image. Each pixel has a colour value, and
this is stored in binary.

The value assigned to a pixel determines the colour of the pixel. The example below shows
the binary representation of a simple bitmap image in which a 1 represents a black pixel and
a 0 represents a white pixel.

 0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 1 0 0 0
0 1 0 0 0

The number of bits assigned to each pixel in an image is called its colour depth. In the
example above, each pixel has been assigned one bit, allowing for 2 (21) different colours to
be represented. If a colour depth of two bits were used, there would be four (22) different
colours that each pixel could take, represented by the bit patterns 00, 01, 10 and 11.

00 11 11 11 11 11 00
11 11 11 11 11 11 11
11 00 01 11 00 01 11
11 00 00 11 00 00 11
11 11 11 11 11 11 11
11 11 10 10 10 11 11
00 11 11 11 11 11 00

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Calculating image size and file size
 𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑐𝑜𝑙𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ
(where file size is to be calculated in bits, width and height are measured in pixels, and
colour depth is measured in bits)

In order to calculate the storage required to represent a bitmap image in bits, multiply the
image size by the bit depth. To calculate the file size of an image in bytes, divide the file size
in bits by 8.

Example
The picture of the face has 7 × 7 = 49 pixels, each of which has a two bit colour-depth, so it
requires 98 bits to be represented.

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 7 × 7 × 2 = 98 𝑏𝑖𝑡𝑠

Effect on image size, quality and file size
Looking at the equation above, higher widths, higher heights and higher colour depths will all
increase an image’s file size.

Increases in… Effect on…

Width Larger image size & higher file size

Height Larger image size & higher file size

Colour depth Higher quality & higher file size

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.7 Representing Sound

How is sound represented in a computer?

Analogue signal

Digital signal

Sound is analogue, meaning that its signal is a continuous wave that can take any value, not
having a singular value. Computers cannot store continuous sound waves, so they take
regular snapshots (samples) of the sound wave’s amplitude. A sample is a measure of
amplitude at a point in time - each sample is stored as a binary number.

The sampling rate is the number of samples taken in a second and is usually measured in
hertz (1 hertz = 1 sample per second).

The sample resolution is the number of bits per sample.

Calculating sound file size

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 × 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(where file size is to be calculated in bits, sampling rate is measured in Hz, sample
resolution is measured in bits and duration is measured in seconds)

To calculate the file size of a sound file in bytes, divide the file size in bits by 8.

Example
For a sound file with a:

●​ Sample rate = 44,100 Hz​

●​ Sample resolution = 16 bits​

●​ Duration = 10 seconds

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 44100 × 16 × 10 = 7056000 𝑏𝑖𝑡𝑠

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Effect on quality and file size

Increases in… Effect on…

Sampling rate Higher sound quality & larger file size

Bit depth More accurate samples & larger file size

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.3.8 Data compression

What is data compression?

Data compression is the process of reducing the file size of digital data without losing the
original information (or with minimal acceptable loss). It is used to save storage space and
speed up transmission.

Why compress data?

●​ Saves storage space​

●​ Speeds up file transfer​

●​ Reduces bandwidth usage​

●​ Helps with faster downloads and streaming

Types of compression

Lossy compression
When using lossy compression, some information is lost in the process of reducing the file’s
size, which can never be fully restored to the original. This could cause the quality of the file
to be slightly reduced.

Used for:

●​ Images​

●​ Audio​

●​ Video

Pros Cons

 ✔ Smaller file size ✘ Loss of quality

 ✔ Faster to send/store ✘ Irreversible (original data gone)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Lossless compression
In contrast to lossy compression, there is no loss of information when using lossless
compression. The size of a file can be reduced without decreasing its quality. Lossless
compression methods use algorithms to find and compress patterns (e.g. repeated data).

Two methods of lossless compression include Huffman coding and run length encoding
(RLE).​

Used for:

●​ Text files​

●​ Code​

●​ Images​

●​ Audio​

●​ Video​

●​ ZIP archives

Pros Cons

 ✔ No loss of quality ✘ Less reduction in size compared to
lossy

 ✔ Reversible

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Huffman coding
Using the ASCII character encoding, every character is encoded using the same number of
bits. However, it is possible to use a smaller number of bits for some characters. Huffman
coding reduces the size of a file by using fewer bits for frequently occurring characters and
more bits for rare ones.

Let’s look at how to create a Huffman tree using an example string, COMPUTER SCIENCE
IS THE BEST SUBJECT.

First, calculate how many times each character appears in the string, and rank these from
most to least frequent. ‘SP’ represents space.

Character Frequency

E 6

SP 4

S 4

C 4

T 4

U 2

B 2

I 2

J 1

H 1

N 1

P 1

R 1

O 1

M 1

Next, select the two characters from the bottom of the ranking and place them, along with
their frequency, into a new binary tree. The new node’s frequency = the sum of the two
frequencies. For example, for N and H, the node would look like this:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Then update the table showing the combined characters.

Character Occurrences

E 6

SP 4

S 4

C 4

T 4

U 2

B 2

I 2

NH 2

J 1

H 1

N 1

P 1

R 1

Take the next two least frequent characters and use them to create a node, and repeat this
process until all the characters are combined.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Once you’ve done this, assign a 0 to the initial left-hand branch and a 1 to the initial
right-hand branch. While you can label all left-hand branches with 0s and all right-hand
branches with 1s, it's enough to just mark the first 0 and 1 as this process can be
time-consuming for larger trees.

(SP represents space)

Now, each character has a unique bit pattern, using these 1s and 0s. For example, the bit
pattern for S is 010, because to get to S from the root node you take the left node (0),
followed by the right node (1), followed by the left node (0), giving 010.

Characters that are more frequent have a shorter bit pattern, making the representation as
compact as possible.

Calculating required bits in Huffman coding and ASCII
We can carry out calculations to determine the number of bits saved by compressing a piece
of data using Huffman coding compared with ASCII.

To calculate the number of bits required to represent a piece of data in ASCII, multiply the
number of characters by 7.

To calculate the number of bits required to represent a piece of data using Huffman coding,
Multiply the length of each character's Huffman code by its frequency. For example, if the
character 'S' has a Huffman code of '010' (3 bits) and appears 100 times, it contributes 3 *
100 = 300 bits to the total. Sum these products for all unique characters in the data, to find
the total number of bits needed to store the original data using Huffman coding.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

To calculate the number of bits saved, subtract the number of bits in Huffman coding from
the number of bits in ASCII.

Run length encoding (RLE)
Run length encoding (RLE) reduces the size of a file by removing repeated information and
replacing it with one occurrence of the repeated information followed by the number of times
it is to be repeated.

00 115 00
117

11 00 01 11 00 01 11
11 002 11 002 11

117
112 103 112
00 115 00

The example uses the image of a face that was represented as a bitmap image earlier in
these notes. Using RLE to replace repeated pixels with one pixel value and a number of
repetitions has reduced the storage space required to represent the image.

The third row of pixels in the image has no repeated values and as such, couldn’t be
compressed by RLE. This highlights the fact that not all data is suitable for compression by
run length encoding. For example, text is not suited to RLE at all, as it is unlikely to have
many ‘runs’ of repeated letters.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	What are number bases?
	Decimal (base 10)
	Binary (base 2)
	Hexadecimal (base 16)
	Bit patterns represent data
	What is base conversion?
	Base conversion is the process of changing a number from one number system to another - specifically, between:
	●​Binary (base 2)​
	●​Decimal (base 10)​
	●​Hexadecimal (base 16)
	You must be able to work with whole numbers only, up to a maximum value of:
	●​Decimal: 255​
	●​Binary: 11111111 (8 bits)​
	●​Hex: FF
	Converting Decimal ↔ Binary
	To convert binary → decimal:
	To convert decimal → binary:
	Converting Binary ↔ Hexadecimal
	Converting Decimal ↔ Hexadecimal
	To convert decimal → hex:
	To convert hex → decimal:
	The fundamental (smallest) unit of information is the bit (binary digit), and larger units are made up of bits grouped together. A collection of 8 bits is called a byte. A bit is notated with a lowercase b whereas a byte uses the uppercase B.
	Comparing quantities of bits
	Binary arithmetic involves performing mathematical operations using binary numbers (0s and 1s).
	Example

	
	Binary shifts
	There are two types of binary shift:
	Example

	Why use binary shifts?
	What is character encoding?
	Character encoding is the process of converting characters (letters, numbers, symbols) into binary so that they can be stored and processed by a computer’s hardware. This is necessary because computers can only store and process binary data.
	A character set, such as ASCII or Unicode, is a collection of characters and their corresponding binary values. Every character is assigned a unique binary code, known as a character code, using a standard such as ASCII or Unicode. Character codes are grouped and they run in sequence. For example in ASCII ‘A’ is coded as 65, ‘B’ as 66, and so on, meaning that the codes for the other capital letters can be calculated once the code for ‘A’ is known. This pattern also applies to other groupings such as lower case letters and digits.
	ASCII (American Standard Code for Information Interchange)
	●​Uses 7 bits to represent each character​
	●​Can store 128 (27) characters​
	●​Includes:​
	○​English letters (uppercase & lowercase)​
	○​Digits 0–9​
	○​Common symbols (@, #, etc.)​
	○​Control codes (like newline)
	Unicode
	●​Uses 8-48 bits to represent each character, allowing it to represent a much wider range of different characters than ASCII​
	●​Supports many different languages (not just the Latin alphabet but also alphabets like Arabic, Cyrillic, Greek and Hebrew), and more symbols (such as emojis). This means that data such as text can be represented in a wider range of languages, making computers more accessible worldwide.​
	Feature
	ASCII
	Unicode
	Bit length
	7 bits (128 characters)
	8–32 bits (over 100k characters)
	Language support
	English only
	Worldwide character support
	Use today
	Legacy systems
	Standard in modern systems
	How are images represented in a computer?
	Digital images, known as bitmaps, are made up of tiny squares called pixels (short for "picture elements"). A pixel is a single point in an image. Each pixel has a colour value, and this is stored in binary.
	
	
	
	Calculating image size and file size
	Example

	How is sound represented in a computer?
	Sound is analogue, meaning that its signal is a continuous wave that can take any value, not having a singular value. Computers cannot store continuous sound waves, so they take regular snapshots (samples) of the sound wave’s amplitude. A sample is a measure of amplitude at a point in time - each sample is stored as a binary number.
	The sampling rate is the number of samples taken in a second and is usually measured in hertz (1 hertz = 1 sample per second).
	The sample resolution is the number of bits per sample.
	Calculating sound file size
	Example

	What is data compression?
	Data compression is the process of reducing the file size of digital data without losing the original information (or with minimal acceptable loss). It is used to save storage space and speed up transmission.
	Why compress data?
	●​Saves storage space​
	●​Speeds up file transfer​
	●​Reduces bandwidth usage​
	●​Helps with faster downloads and streaming
	Types of compression
	Lossy compression

	Used for:
	●​Images​
	●​Audio​
	●​Video
	Pros
	Cons
	 ✔ Smaller file size
	 ✘ Loss of quality
	 ✔ Faster to send/store
	 ✘ Irreversible (original data gone)
	
	Lossless compression

	Used for:
	●​Text files​
	●​Code​
	●​Images​
	●​Audio​
	●​Video​
	●​ZIP archives
	Pros
	Cons
	 ✔ No loss of quality
	 ✘ Less reduction in size compared to lossy
	 ✔ Reversible
	
	
	Huffman coding
	Calculating required bits in Huffman coding and ASCII

	Run length encoding (RLE)

